First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs
نویسندگان
چکیده
منابع مشابه
Analytic continuation of Dirichlet-Neumann operators
The analytic dependence of Dirichlet-Neumann operators (DNO) with respect to variations of their domain of definition has been successfully used to devise diverse computational strategies for their estimation. These strategies have historically proven very competitive when dealing with small deviations from exactly solvable geometries, as in this case the perturbation series of the DNO can be e...
متن کاملFriedlander’s Eigenvalue Inequalities and the Dirichlet-to-neumann Semigroup
If Ω is any compact Lipschitz domain, possibly in a Riemannian manifold, with boundary Γ = ∂Ω, the Dirichlet-to-Neumann operator Dλ is defined on L2(Γ) for any real λ. We prove a close relationship between the eigenvalues of Dλ and those of the Robin Laplacian ∆μ, i.e. the Laplacian with Robin boundary conditions ∂νu = μu. This is used to give another proof of the Friedlander inequalities betwe...
متن کاملA new approach to analyticity of Dirichlet-Neumann operators
This paper outlines the theoretical background of a new approach towards an accurate and well-conditioned perturbative calculation of Dirichlet{Neumann operators (DNOs) on domains that are perturbations of simple geometries. Previous work on the analyticity of DNOs has produced formulae that, as we have found, are very ill-conditioned. We show how a simple change of variables can lead to recurs...
متن کاملOn the first twisted Dirichlet eigenvalue
In this paper we prove an isoperimetric inequality for the twisted Dirichlet eigenvalue which was introduced by Barbosa and Bérard in the context of constant mean curvature surfaces. More precisely, we show that in the Euclidean case this eigenvalue is minimized by the union of two equal balls.
متن کاملAnalyticity of Dirichlet-Neumann Operators on Hölder and Lipschitz Domains
In this paper we take up the question of analyticity properties of Dirichlet–Neumann operators with respect to boundary deformations. In two separate results, we show that if the deformation is sufficiently small and lies either in the class of C1+α (any α > 0) or Lipschitz functions, then the Dirichlet–Neumann operator is analytic with respect to this deformation. The proofs of both results ut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2017
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-017-1260-3